Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora.
نویسندگان
چکیده
The involvement of two primary alcohol dehydrogenases, BDH and BOH, in butane utilization in Pseudomonas butanovora (ATCC 43655) was demonstrated. The genes coding for BOH and BDH were isolated and characterized. The deduced amino acid sequence of BOH suggests a 67-kDa alcohol dehydrogenase containing pyrroloquinoline quinone (PQQ) as cofactor and in the periplasm (29-residue leader sequence). The deduced amino acid sequence of BDH is consistent with a 70.9-kDa, soluble, periplasmic (37-residue leader sequence) alcohol dehydrogenase containing PQQ and heme c as cofactors. BOH and BDH mRNAs were induced whenever the cell's 1-butanol oxidation activity was induced. When induced with butane, the gene for BOH was expressed earlier than the gene for BDH. Insertional disruption of bdh or boh affected adversely, but did not eliminate, butane utilization by P. butanovora. The P. butanovora mutant with both genes boh and bdh inactivated was unable to grow on butane or 1-butanol. These cells, when grown in citrate and incubated in butane, developed butane oxidation capability and accumulated 1-butanol. The enzyme activity of BOH was characterized in cell extracts of the P. butanovora strain with bdh disrupted. Unlike BDH, BOH oxidized 2-butanol. The results support the involvement of two distinct NAD(+)-independent, PQQ-containing alcohol dehydrogenases, BOH (a quinoprotein) and BDH (a quinohemoprotein), in the butane oxidation pathway of P. butanovora.
منابع مشابه
An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by "Pseudomonas butanovora".
Butane-grown "Pseudomonas butanovora" expressed two soluble alcohol dehydrogenases (ADHs), an NAD(+)-dependent secondary ADH and an NAD(+)-independent primary ADH. Two additional NAD(+)-dependent secondary ADHs could be detected when cells were grown on 2-butanol and lactate. The inducible NAD(+)-independent 1-butanol dehydrogenase (BDH) of butane-grown cells was primarily responsible for 1-but...
متن کاملRoles for the two 1-butanol dehydrogenases of Pseudomonas butanovora in butane and 1-butanol metabolism.
Pseudomonas butanovora grown on butane or 1-butanol expresses two 1-butanol dehydrogenases, a quinoprotein (BOH) and a quinohemoprotein (BDH). BOH exhibited high affinity towards 1-butanol (K(m) = 1.7 +/- 0.2 microM). BOH also oxidized butyraldehyde and 2-butanol (K(m) = 369 +/- 85 microM and K(m) = 662 +/- 98 microM, respectively). The mRNA induction profiles of BOH and BDH at three different ...
متن کاملDiversity in butane monooxygenases among butane-grown bacteria.
Butane monooxygenases of butane-grown Pseudomonas butanovora, Mycobacterium vaccae JOB5, and an environmental isolate, CF8, were compared at the physiological level. The presence of butane monooxygenases in these bacteria was indicated by the following results. (i) O(2) was required for butane degradation. (ii) 1-Butanol was produced during butane degradation. (iii) Acetylene inhibited both but...
متن کاملChloroform Cometabolism by Butane-Grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and Methane-Grown Methylosinus trichosporium OB3b.
Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane i...
متن کاملSite-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: Implications for substrates knocking at the gate.
Butane monooxygenase (BMO) from Pseudomonas butanovora has high homology to soluble methane monooxygenase (sMMO), and both oxidize a wide range of hydrocarbons; yet previous studies have not demonstrated methane oxidation by BMO. Studies to understand the basis for this difference were initiated by making single-amino-acid substitutions in the hydroxylase alpha subunit of butane monooxygenase (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 7 شماره
صفحات -
تاریخ انتشار 2002